It is also important to think about feature selection for training the model. 在训练模型时考虑使用特征选择也是很重要的。
AVR and enhanced LBP feature selection method for facial expression recognition 面向表情识别的AVR和增强LBP特征选择方法
Study and Analyze on Feature Selection in Text Categorization 文本分类中特征选择方法研究及分析
The Research of Genetic Algorithm combination with the Text of Feature Selection 遗传算法与文本特征选择方法相结合的研究
The object modeling is mainly summarized and analysized, then the feature selection, statistical model of feature and similarity measuring are described. 对目标建模技术进行了综述和分析,分别从特征选择、特征的统计建模和相似性度量三个方面进行了阐述。
Feature reduction method involves feature selection and feature extraction. 降维的主要方法是特征选择和特征提取。
Determine which normalization techniques or feature selection algorithm can enable increased reproducibility. 确定哪些标准化技术或者特征选择算法可以增加再现性。
Research on the Algorithm of Feature Selection Based on Difference and Multiple Features 文本分类中基于差值思想的多特征选择算法研究
In particular methods for confidence estimation and feature selection with Support Vector Machines will be described. 特别是支持向量机的特征选取和信赖度估计方法。
Feature Selection Method Based on Optimal Document Frequency and Information Quantity 基于优化文档频和信息量的特征选择方法
Feature Selection Methods Study Based on Gene Expression Data and Amino Acids Sequences 基于基因表达谱数据和氨基酸序列的特征提取方法研究
Feature Selection Based on Adaptive Genetic Algorithm and SVM 基于自适应遗传算法和SVM的特征选择
Research on combination feature selection method based on data fusion 基于数据融合的组合特征提取方法的研究
Feature Selection Based on Mutual Information Maximization and Feature Clustering 基于互信息最大化和特征聚类的特征选择
The complexity of feature selection for real-world data stream will increase because of high-dimensional data and concept drifting. 概念流动的出现及数据的高维性增加了数据流特征选择的复杂性。
Feature selection based on hierarchical clustering and partial least squares 基于层次聚类算法和偏最小二乘的特征选择
Image annotation based on genetic feature selection and support vector machines 基于遗传特征选择和支持向量机的图像标注
To improve the classification performance, this article puts forward the multi level feature selection method and the kernel based distance weighted KNN algorithm. 为了提高分类性能,本文提出了中文文本多层次特征提取方法和基于核的距离加权KNN算法。
After analyzing some normal evaluation functions for feature selection, a new evaluation function named the ratio of mutual information in feature selection was presented. 在分析了常用的一些特征选择的评价函数的基础上,提出了一个新的评价函数,即互信息比值。
Feature Selection Method Study Based on Mts-pca and Its Application to Cancer Classification 基于mts-pca的特征选择方法研究及其在肿瘤分类中的应用
Research on hierarchical text categorization using approach of multiple feature selection and multiple classifier fusion 基于多重特征选择和多分类器融合的文本层次分类研究
This paper introduce the framework of Feature selection algorithm, gives the main algorithms, discuss the central research hotspots and potential directions. 为此,综述了特征选择算法的框架,给出了目前的主要算法,并探讨了目前的研究热点和将来可能的研究方向。
The key operation of data preprocessing is feature selection and extraction. 数据预处理的关键是特征选择和提取。
Research on Feature Selection and Classification for DNA Microarray 基因微阵列特征选择与分类方法研究
Feature Selection Method Based on Fractal Dimension and Ant Colony Optimization Algorithm 基于分形维数和蚁群算法的属性选择方法
A second-order feature selection method based on complete2DPCA is proposed for face recognition. 提出一种基于完全二维主元分析(2DPCA)的二次特征选择方法用于人脸识别。
Study of attribute union theory in feature selection 关系积理论在特征选择中的应用研究
Feature selection is the core research topic in text categorization. 特征选择是文本分类的一个核心研究课题。
In this paper, the uncertainty coefficient of the feature subset is proposed to be a feature selection measure. 提出了运用特征子集的不确定性系数作为特征选择的度量。
Firstly, the basic theory and famous algorithms of feature selection were roughly introduced. 首先对属性选择的基本思想和常用算法进行简要介绍;